# **Opportunities to Elevate Levels of Curcumin in** *Curcuma xanthorrhiza* **Plants**

Authors

Pertamawati

Afiliation

Center for Pharmaceutical and Medicine Technology – LAPTIAB – BPPT

#### Keyword

C.xanthorrhiza

- Callus culture
- Curcuminoids

Received7 September 2015Revised7 Februari 2017Accepted25 Januari 2018

\*Corresponding author Pertamawati PUSPIPTEK Area – Serpong – Banten pertamawatikartakusumah@g mail.com



### ABSTRACT

Production of curcuminoids from *Curcuma xanthorrhiza* using conventional cultivation technique requires a very long time from planting to harvesting process. The use of biotechnology known as the callus culture is expected to help this problem. An experiment was conducted with the explant of curcuma leaves which are cultured in basic media of Murashige & Skoog (MS) with addition of growing substances Phenilalanine (2-amino-3-fenil-propanoat acid/C<sub>9</sub>H<sub>11</sub>NO<sub>2</sub>) with a concentration of 2, 4 and 8 mg/L and Sodium Acetate (CH<sub>3</sub>COONa) with concentration of 0.2 and 4 mg/L. Experiments done with random design with 3 times replication. The results showed that addition of Phenilalanine at a concentration of 4 mg/L produced curcuminoids namely curcumin 0.8861% and desmethoxycurcumin 0.3307%, while the addition of sodium acetate 2 mg/L was able to induce the formation of curcuminoids namely curcumin 0.7514% and desmethoxycurcumin 0.3898%. It is suggested that further research with a callus induction technology in tissue culture need to be conducted for producing curcumin in an industrial scale.

#### INTRODUCTION

Temulawak (*Curcuma xanthorrhiza* Roxb.) is an Indonesian native and widely used as medicines, food, colorings in raw material industry (cosmetics) and rated fresh of food / drink (Indrayanto 1987; Dalimartha 2000). Rukmana (1995) said that temulawak rhizome contains starch fraction, curcominoid and essential oils (3-11%). The curcuminoid fraction consists of curcumin and desmethoxycurcumin (Afifah et al., 2005; Dalimartha 2000). Curcuminoid is one of the secondary metabolite which have the activities as antihepatotoxic, antiinflamasi and antioxidant (Tonnesen 1986). Most of secondary metabolite including curcuminoid obtained can be commercially isolated from plants (Cahyono 1998).

The production of secondary metabolite compound in the plant tissue culture is highly influenced by several factors, among other genetic factors and the media growing also substance plants hormone (Street 1977; Hendaryono and Wijayni 1994; Untung and Fatimah, 2003). Auxin known as plant hormone that induces the capability of callus formation (Tomes et al. 1982; Untung and Fatimah 2003). Precursor is a compound that plays role in the secondary metabolite biosynthesis, namely by stimulating the formation of a secondary metabolite in plants.

A secondary metabolite in plants is available only in small quantities. So the addition of a precursor in culture media capable of stimulating the formation of secondary metabolite. Based on the theory, research on the effect of the precursor provision on curcuminoids formation in temulawak callus in MS Media.

#### METHODS

**Plant material** is callus, rhizome and shoots of temulawak (*Curcoma xanthorrhiza* Roxb.). **The basic media** used is Murashige & Skoog (MS) with the addition of plant hormone Naphthalene Acetic Acid (NAA) and Furfuril Amino Purine (FAP) with the same concentration (3:3 mg/l). A precursor of Phenilalanine and Sodium Acetate given in successive amount of 0 mg/l; 2 mg/l and 4 mg/l.

#### Reagent

The reagent a chemicals that used during this study were Dithane 430F, etanol 70%, Bayclin (Na hypocloride), Tween 80 and aquadest sterile, also used chemicals for analysis o curcuminoid in TLC (Thin Layer Chromatography), methanol, ethanol 96%, acetic acid glacial, chloroform, hexane, ethyl acetate, silica gel plate GF254 and curcuminoid standard. Material for analysis was NaOH 5% and concentrated sulfuric acid : ethanol 96% with comparison 1:1.

#### Instrument

Culture bottle and glassware, pipet drops, syringe, pH indicator stick, aluminium foil, autoclave, pinzet, scapel, LAF petri dish, petri dish, UV illuminator, kit densitometer (TLC scanner cs-930).

#### Observation

The parameters of observation include time of the explant forms a callus, done by means of noted day of how every explant that cultured form a callus. The percentage of a callus growth by counting the number of explant that succeed forming callus divided by the total number of explant planted, and harvesting of callus, done after the formed callus ready for harvesting, indicated by explant that have been overgrown with a callus

#### **Curcuminoid analysis**

The callus, shoots and rhizome were dried in an oven at temperatures of roughly 50°C then mashed. Dry powder mixed with methanol (p.a) at a ratio of 1:10 (b/v) shaked at a speed 80 rpm for 24 hours. Filtrate produced is collected the methanol volatilized in order to obtain the dry methanolic extract. Methanolic extracts obtained, then weighed and is dissolved in 10 mls of methanol (p.a). 50 mg of curcominoid pollen standard was then added to 10 ml omethanol (p.a) to obtain curcuminoid standard 5000 mg/l. Then pipeted the solution as much as 1 ml plus methanol (p.a) into squash measures of 100 mls of a solution until reached of 50 mg/l stock solution. Then 1 ml of solution is added to 100 ml of methanol to obtain 50 mg/l stock solution.

#### **Qualitative analysis**

The qualitative analysis was conducted using color reaction. The extract was added with NaOH 95% and curcuminoid was shown with red and reddish orange. (Wagner 1985). The palette used to be silica gel GF254 (stationary phase). Solution for curcuminoid standard, callus extract, shoots and rhizome of temulawak was spoted each as much as 1ul on the plate using a micropipet at a distance of 1.5 cm from bottom, left and right side plates. The distance between spots are also 1,5 cm. During the spotting, the stain on the plate are air dried, then the plates were developed in chromatography vessels that is saturated with a developing solution chloroform : ethanol 96% ; acetic acid glacial (94:5:1) as phase motion (Wagner et al. 1984).

Eluent for chromatography was also using ethanol 96% :  $CHCl_3$  (7:3) and hexane : Ethyl acetate (1:1) (Wagner et al. 1984). Plate left in order to continue with motion solution following the developers spot. The development was stopped after reaching a compromise distance of 7.5 cm. Plates were observed under UV light 254 nm and patches are identified by comparing the color and value of hRf callus, shoots and rhizome temulawak with hRf curcuminoid for comparison. A solution for developers with the best separation was then used for identification of all callus.



#### **Quantitative analysis**

The standard curve of curcuminoid made from standard solution with a concentration of 50 mg/l, that spots as much as 1, 2, 4, 8 and 16 µl in silica gel GF254. Then development in a developing is to provide the best solution for qualitative identification. The spot was analyzed using TLC densitometer, the broad area and heavy spot were put into linear based curve regression.

The determination of curcuminoid levels in callus extract with spotting 16 ul of the solution then developed with a developing solution that gives best separation at the qualitative test. Spotting detected with a TLC densitometer tool. The results of widespread area detection put into the linear regression of curcuminoid curve. The chromatography test was done 3 t replication using the similar phase developer and solution.

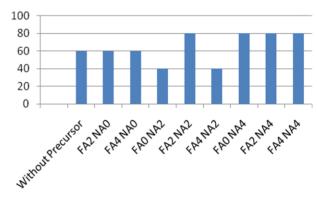
#### **RESULTS AND DISCUSSION**

Curcuma extract contains many phenol compounds, therefore optimal sterilization method is required. The best sterilization method is done by immersion into the following substances : Detergent for 5 minutes; Aquadest sterile for 10 minutes; Dithane 430f for 30 minutes; Bayclin 30% and Tween 80 for 10 minutes; Bayclin 15% and Tween 80 For 5 minutes and Ethanol 70% for 1 minute.

#### Procentage of the callus growth

The determination of the callus growth by counting the number of explant that manage to form callus divided by the total explant planted multiplied by 100%. The percentage success of culture, rhizome and shoots of temulawak is on Table 1 and Graph 1.

**Table 1** The influence of the addition of the precursors to callus media grow of Curcuma xanthorrhiza D - . . la /0/)


| Roxb (%) |                                 |                   |
|----------|---------------------------------|-------------------|
| No.      | The Precursor                   | Callus growth (%) |
| 1        | MS <sub>0</sub>                 | 60                |
| 2        | $PA_2 NA_0$                     | 60                |
| 3        | $PA_4 NA_0$                     | 60                |
| 4        | $PA_0 NA_2$                     | 40                |
| 5        | $PA_2 NA_2$                     | 80                |
| 6        | $PA_4 NA_2$                     | 40                |
| 7        | PA <sub>0</sub> NA <sub>4</sub> | 80                |
| 8        | $PA_2 NA_2$                     | 80                |
| 9        | $PA_4 NA_4$                     | 80                |

Information :

| MS <sub>0</sub> | : Medium MS without addition of a           |
|-----------------|---------------------------------------------|
|                 | hormone and precursor                       |
| $PA_2 NA_0$     | : Medium MS with addition of Phenilalanin 2 |
|                 | mg/I and Sodium Acetate 0 mg/I              |
| $PA_4 NA_0$     | : Medium MS with addition of Phenilalanin 4 |
|                 | mg/I and Sodium Acetate 0 mg/I              |
| $PA_0 NA_2$     | : Medium MS without addition of             |
|                 | Phenilalanin and Sodium Acetate 2 mg/l      |
| $PA_2 NA_2$     | : Medium MS with addition of Phenilalanin 2 |
|                 | mg/I and Sodium Acetate 2 mg/I              |
| $PA_4 NA_2$     | : Medium MS with addition of Phenilalanin 4 |
|                 | mg/I and Sodium Acetate 2 mg/I              |
| $PA_0 NA_4$     | : Medium MS without addition of             |
|                 | Phenilalanin and Sodium Acetate 4 mg/l      |
| $PA_2 NA_4$     | : Medium MS with addition of Phenilalanin 2 |
|                 | mg/I and Sodium Acetate 4 mg/I              |
|                 | : Madium MS with addition of Phanilalanin A |

: Medium MS with addition of Phenilalanin 4  $PA_4 NA_4$ mg/l and Sodium Acetate 4 mg/l

Callus Growth (%)

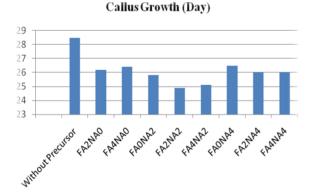


**Graph 1** The Influence of Precursor Addition to Growing Media Procentase Against Temulawak Callus (%)

#### The information of Graph 1 equal to the information of Table 1

Growth of a good explant is characterized by the incomplete occurrence of browning, and contaminated by fungi or bacteria either on explant and medium. The percentage success of temulawak callus growth was not influenced by the provision of precursor treatment. This can be seen in Table 1, in the media is MS without the addition of precursor (control) the callus growth is almost similar to the media with the addition of a precursor. Even media MS without the addition of a




precursor shows callus growth better if compared with the addition of  $PA_0NA_2$  and  $PA_4NA_2$ .

#### The explant time to form a callus

The formation of callus started with the establishment of a cluster around a wedge on the clear colorless explant. The time of the formation of callus shown on a Table 2 and Graph 2.

**Table 2** The influence of the addition of the precursorto media growing against time the formation ofcallus (day)

| No. | The Precursor   | The formation of<br>Callus (days) |
|-----|-----------------|-----------------------------------|
| 1   | MS <sub>0</sub> | 28.5                              |
| 2   | $PA_2 NA_0$     | 26.2                              |
| 3   | $PA_4 NA_0$     | 26.4                              |
| 4   | $PA_0 NA_2$     | 25.8                              |
| 5   | $PA_2 NA_2$     | 24.9                              |
| 6   | $PA_4 NA_2$     | 25.1                              |
| 7   | $PA_0 NA_4$     | 26.5                              |
| 8   | $PA_2 NA_2$     | 26.0                              |
| 9   | $PA_4 NA_4$     | 26.0                              |



**Graph 2** The Influence of the Addition of the Precursor to in a Media Growing Against the Time of Formation Calls (days).

## The information of Table 2 equal to the information of Table 1

In Graph 2 it can be seen that the provision of precursor tends to accelerate callus formation. The provision of a precursor  $PA_2 NA_2$  produces the best effect on the formation of temulawak callus with the fastest time of 24.9 days.

#### Harvesting callus

Harvesting callus is conducted when the colorless transparent whole clustered around explant was established. Harvesting callus is done after a callus was about 8 weeks. The results of the weighing of callus wer in Table 3.

#### Tabel 3 The Heavy Temulawak Callus

| Treatment                       | Weight of Ca | Weight of Callus (gram) |  |
|---------------------------------|--------------|-------------------------|--|
| Treatment                       | Fresh        | Dry                     |  |
| MS <sub>0</sub>                 | 3.98         | 0.343                   |  |
| Controle                        | 0.972        | 0.096                   |  |
| $FA_2NA_0$                      | 1.09         | 0.107                   |  |
| $FA_4NA_0$                      | 0.72         | 0.067                   |  |
| FA <sub>0</sub> NA <sub>2</sub> | 0.55         | 0.053                   |  |
| $FA_2NA_2$                      | 1.68         | 0.164                   |  |
| $FA_4NA_2$                      | 0.23         | 0.023                   |  |
| $FA_0NA_4$                      | 1.65         | 0.163                   |  |
| $FA_2NA_4$                      | 1.83         | 0.18                    |  |
| FA <sub>4</sub> NA <sub>4</sub> | 1.89         | 0.191                   |  |

The provision of a precursort has the effect of a fresh the callus weight. The callus in medium without the addition of precursors (MSO) have greater weight than any other medium The smallest weight of callus is in medium with the addition of Phenilalanin 4 mg/l and Sodium Acetate 2 mg/l.

#### The qualitative analysis of curcuminoid

Preliminary test was conducted to ensure curcuminoid is in callus. shoots and rhizome of temulawak and was extracted with methanol. Data weighting of a rhizome and the shoot can be seen in Table 4

| Kinds                | Weight (gram) |     |
|----------------------|---------------|-----|
| Killus               | Fresh         | Dry |
| Rhizome of Temulawak | 20.132        | 1.4 |
| Shoot of Temulawak   | 10.616        | 1.4 |

Analysis of curcuminoid in temulawak rhizome and shoots is necessary to compare the curcuminoid contained in a callus. All materials in Table 1 and Table 3 were extracted with methanol. Qualitative test was done through the reaction of colour and TLC (Thin Layer Chromatopgaphy). The results of the colour test



of curcuminoid performed on the extract callus. rhizome and shoots of temulawak.

Based on the colour reaction indicates that in the shoots. rhizome and callus of temulawak study containing curcuminoid (data are not shown). TLC analysis was conducted on all callus that have growth and maximum results.

The first step of TLC was conducted on a standard curve. The callus. rhizome and shoots of temulawak was tested by using silica gel GF254 and developed with 3 types of eluent. namely :

- CHCl<sub>3</sub>: ethanol 96% : Acetic Acid (94:5:1)
- Ethanol 96% : CHCl<sub>3</sub> (7:3)
- Hexane : Ethyl Acetate (1:1)

The use of 3 solution different developer is intended to clarify the identification. Chromatogram of TLC results seen in Table 5.

**Table 5** Result at phase Silica Gel GF254 with a solutiondeveloper a. b and c

| Developer<br>solution                    | Spotting                                     | hRf<br>value |
|------------------------------------------|----------------------------------------------|--------------|
| CHCl <sub>3</sub> : Ethanol 96%          | B1 : Spotting I (Curcumin)                   | 60           |
| : glacial Acetic Acid<br>(94:5:1)        | B2 : Spotting II<br>(Desmethoxycurcumin)     | 50           |
|                                          | B3 : Spotting III<br>(Bisdesmethoxycurcumin) | 40           |
| Ethanol 96% : CHCl <sub>3</sub><br>(7:3) | 1 spotting                                   | 90           |
| Hexana : Ethyl<br>Acetat (1:1)           | 1 spotting                                   | 50           |

Table 5 shows the results of the separation using the three types of developing solution. The best separation is indicated by developing solutions (1) the CHCl<sub>3</sub> : Ethanol 96% : Acetic Acid glacial (94:5:1). because this developing solution is capable of separating curcuminoid. Curcuminoid components standard shows the separation that produces 3 spot because of component curcuminoid standard used consists of curcumin. desmethoxycurcumin and bisdesmethoxycurcumin. The separation of spotting on a callus. rhizome and shoots of temulawak only produces 2 spotts indicating components of curcumin and desmethoxycurcumin.

Result on developing solution of Ethanol 96%: CHCl<sub>3</sub> (7:3) and Hexane : Ethyl Acetate (1:1) does not show the separation of curcuminoid components because



only produce 1 patches. The results indicating separation on the curcuminoid in a callus. rhizome and shoots of temulawak. because having hRf value equal to the hRf value of curcuminoid standard.

Commonness by virtue of polar characteristic of a curcuminoid component of a developing solution of the CHCl<sub>3</sub>: Ethanol 96%: glacial Acetic Acid (94:5:1). show that blots appear on hRf 50 is desmethoxycurcumin and of wheals that appears at hRf 60 is curcumin. Spotting bisdesmethoxycurcumine on curcuminoid standard appear on hRf 40 and was not found in callus. rhizomes and shoots of temulawak. This is in accordance with that reported by Stahl (1985) that curcuminoid on a callus and rhizomes of temulawak containing only curcumin and desmethoxycurcumine

Further analysis was conducted to all callus using a developing solution of the CHCl<sub>3</sub> : Ethanol 96% : glacial Acetic Acid (94:5:1) that showed the best results of separation. Further analysis indicated by TLC data at phase of the silica gel GF254 with a developer solution of the CHCl<sub>3</sub> : Ethanol 96% : glacial Acetic Acid (94:5:1) under the UV 254 nm and 366 nm. The results of testing show the total sample with 16  $\mu$ l spotting produces yellow spotting visually. brownish yellow on UV 254 nm and brown on UV 366 nm. The test results showed that all callus examined contains compounds like curcuminoid on rhizome and shoots of temulawak. this can be seen from the same of spot colour with standard curcuminoid. the colour of spotts and hRf value.

The first step of TLC was conducted on a standard curve. One callus, rhizome and shoots of temulawak was tested by using phase of silica gel GF254 and developed with 3 types of developing solution, namely :

- a. CHCl<sub>3</sub>: ethanol 96% : Acetic Acid (94:5:1)
- b. Ethanol 96 : CHCl3 (7:3)
- c. Hexane : Ethyl Acetate (1:1)

The use of 3 solution different developer is intended to clarify the identification. Chromatogram of TLC results seen in Figure 1.

Chromatogram profile in Figure 1 that shows the results of the separation using the three types of developing solution. The best separation is indicated by developing solution (1) the  $CHCl_3$ : Ethanol 96% : glacial Acetic Acid glacial (94:5:1), because this developing solution is capable of separating components curcuminoid. Curcuminoid standard shows the separation that produces 3 paches because of component curcuminoid standard used consists of curcumin, desmetoxicurcumin and

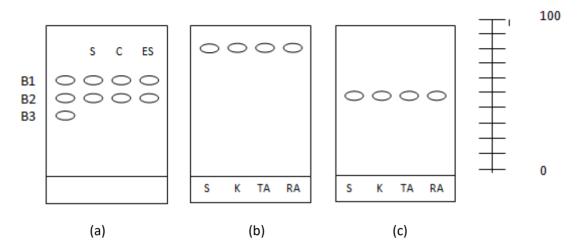



Figure 1. Chromatogram at phase Silica Gel GF254 with a solution developer a, b and c

#### Information :

- S : Curcuminois extract standard
- C : Extract of rhizome callus temulawak
- ES : Extractof shoots temulawak
- ER : Extract of rhizome temulawak
- B1 : Spotting I (Curcumin)
- B2 : Spotting II (Desmetoxicurcumin)
- B3 : Spotting III (Bisdesmetoxicurcumin)
- (a) : Developer solution CHCl<sub>3</sub> : Ethanol 96% : glacial Acetic Acid (94:5:1)
- (b) : Developer solution Ethanol 96% : CHCl<sub>3</sub> (7;3)
- (c) : Developer solution Hexana : Ethyl Acetat (1:1)

bisdesmetoxicurcumin. The separation of spotting on a callus, rhizome and shoots of temulawak only produces 2 patches indicating components of curcumin and desmetoxycurcumin.

Chromatogram on developing solution of Ethanol 96% :  $CHCl_3$  (7:3) and Hexane : Ethyl Acetate (1:1) does not show the separation of curcuminoid components because only produce 1 patches. The results indicating separation on the curcuminoid in a callus, rhizome and shoots of temulawak, because having hRf value equal to the hRf value of curcuminoid standard.

Commonness by virtue of polar characteristic of curcuminoid component on a developing solution of the  $CHCl_3$ : Ethanol 96% : glacial Acetic Acid (94:5:1), show that blots appear on hRf 50 is desmetoxicurcumin and of wheals that appears at hRf 60 is curcumin. Spotting bisdesmetoxycurcumine on curcuminoid standard appear on hRf 40 and was not founding in callus, rhizomes and shoots of temulawak. This is in accordance with that reportedby Stahl (1985) that

curcuminoid on a callus and rhizomes of temulawak containing only curcumin and desmetoxycurcumine

Further analysis was conducted to all callus using a developing solution of the CHCl<sub>3</sub> : Ethanol 96% : glacial Acetic Acid (94:5:1) that showed the best results of separation. Further analysis indicated by TLC data at phase of the silica gel GF254 with a developer solution of the CHCl<sub>3</sub> : Ethanol 96% : glacial Acetic Acid (94:5:1) under the UV 254 nm and 366 nm. The results of testing shows the total sample with 16  $\mu$ l spotting produces yellow spotting visually, brownish yellow on UV 254 nm and brown on UV 366 nm.

The test results showed that all callus examined contains compounds like curcuminoid on rhizome and shoots of temulawak, this can be seen from the same of spot colour with standard curcuminoid, the colour of patches and hRf value.

The third chromatogram profile producing 2 spotts (Table 6). Despite the hRf is a little different. so based on the results of the early identification (Figure 1) the



first spotting is curcumin and the second one is desmethoxycurcumin (Stahl. 1985).

## **Table 6** The result of callus. shoots and rhizome extractof temulawak on phase silica gel GF254

| Developer<br>solution       | Spotting             | hRf<br>value |
|-----------------------------|----------------------|--------------|
| CHCl <sub>3</sub> : Ethanol | B1 : Spotting 1      | 50           |
| 96% : glacial               | (Curcumin)           |              |
| Acetic Acid                 | B2 : Spotting 2      |              |
| (94:5:1)                    | (Desmethoxycurcumin) |              |

#### The quantitative analysis of curcuminoid

The curcuminoid standard solution as much as 1. 2. 4. 8 and 16  $\mu$ L spotted on a plate of silica gel GF254 was used for raw curve in a developing solution CHCl<sub>3</sub>: ethanol 96%: glacial Acetic Acid (94:5:1). The development was stopped after separation is perfectly complete. The results of the development showed 3 blots that are a component curcuminoid standard which consists of curcumin (spott 1. hRf 90). desmethoxycurcumin (spott 2. hRf 60) and bisdesmetoxycurcumin (spott 3. hRf 40).

| Developer     | Spotting                | hRf   |
|---------------|-------------------------|-------|
| solution      |                         | value |
| CHCl₃:        | B1 : Curcumin           | 90    |
| Ethanol 96%   | B2 : Desmethoxycurcumin | 60    |
| : Glacial     | B3 :                    | 40    |
| acetic acid = | Bisdesmethoxycurcumin   |       |
| 94 : 5 : 1    |                         |       |

The determination of TLC curcuminoid levels on the plate. is followed by the determination of maximum wavelengths of curcuminoid. The results obtained that the maximum long wave curcuminoid is 368 nm Broad area and content of each spot from the wheals curcminoid standard use to make linear regression equation. The results of the calculation of the regression are as follow:

- 1. Test I : Y = 563.58 + 1835.77X
- 2. Test II : Y = 520.99 + 1592.26X

The linear regression equation calculated are used to determine levels of curcuminoid of callus. shoots and rhizomes by inserting the value of the area that broadly obtained into an equation a line. Stahl (1985) said that curcuminoid callus and rhizome of temulawak



produce 2 spotting on the chromatogram. while curcuminoid standard produce 3 patches. Based on that. the linear regression equation used for the calculation of the detection in broad areas on spotting 1 and 2.

#### The determination of temulawak curcominoid level

Curcuminoid level calculated from dry extract and dry callus. The result of curcuminoid calculation level (%) shows that curcumin level of fresh callus in growing media with addition of Phenilalanin 4 mg/l is 0.8861% and desmethoxycurcumin is 0.3307%. while the addition of Sodium Acetate 2 mg/l into growing media produce curcumin levels as many as 0.7514% and desmethoxycurcumin 0.3898%. Curcumin levels and desmethoxycurcumin level were the highest in research. as written in Table 5.

 Table 8 The level of curcumin and desmetoxycurcumin in fresh callus

| Precursor                       | Level of<br>curcumin (%) | Level of<br>Desmetoxycurcumin<br>(%) |
|---------------------------------|--------------------------|--------------------------------------|
| MS0                             | 0.270                    | 0.233                                |
| FA <sub>4</sub> NA <sub>0</sub> | 0.8861                   | 0.3307                               |
| FA <sub>0</sub> NA <sub>2</sub> | 0.75141                  | 0.3898                               |

The research results show that in 8 weeks starting from the first day as the formation of callus. explant by the addition of a precursor in various concentrations produce curcuminoid in extract and callus with different level from their native bud of a plant.

In Table 8 it can be seen that the curcumin are much greater than the desmethoxycurcumin. The results of the study shows a callus in  $MS_0$  media have heavier weight than most other treatment (Table 1.) but curcuminoid level is least. The weight of the callus reflects a quality growth . A metabolite with the highest proportion allocate to growth is derived from primary metabolism. A callus with greater weight shows more accumulated primary metabolite but less secondary metabolite. It happens because the cell metabolism give higher priority to primary metabolite synthesis.

The level of curcuminoid temulawak rhizome (RA) was higher than the level of curcuminoid temulawak shoots (TA). because temulawak rhizome has experienced maximum growth. so that the synthesis of curcuminoid is more in temulawak rhizome. while

temulawak shoots just beginning the growth and the curcuminoid synthesized is still in small.

The level of curcuminoid extract higher than the level of curcuminoid of temulawak rhizome. shoots and callus. This shows that the level of curcuminoid extract not the same in curcuminoid of temulawak callus. rhizome and shoots.

The result showed that the addition of Phenilalanin in the medium without the addition of Sodium Acetate capable of inducing synthesis of curcuminoid. Although levels of curcuminoid smallest but it turn out the addition of Sodium Acetate without Phenilalanin also able to increase levels of temulawak curcuminoid. While Sodium Acetate has its effect on the synthesis of desmethoxycurcumin. the addition of Phenylalanin and Sodimum Acetate as a precursor simultaneously is capable of inducing synthesis of curcuminoid of temulawak curcuminoid.

#### CONCLUSION

Based on the results. the conclusion that may be drawn are the addition of Phenylalanin and Sodium Acetate with various concentrations in a common medium MS were capable to induce the synthesis of curcuminoid in a temulawak callus. The addition of Phenylalanin as much as 4 mg/l into growing media was capable to induce the production of curcumin as many as 0.8861 % and desmethoxycurcumin 0.3307% while the addition of Sodium Acetate 2 mg/l into growing media produce curcumin levels as many as 0.7514% and desmethoxycurcumin 0.3898%. Phenylalanin impact on the synthesis of curcumin. meanwhile Sodium Acetate impact on the synthesis of desmethoxycurcumin.

#### ACKNOWLEDGMENT

The authors thank Nina Artanti. PhD for her support and collaboration.

#### REFERENCES

- Afifah E. 2003. Khasiat dan Manfaat Temulawak: Rimpang Penyembuh Aneka Penyakit. Jakarta (ID): Agro Media Pustaka. Hlm. 7-13.
- Cahyono B. 1998. Tembakau Budidaya dan Analisis Usaha Tani. Yogyakarta(ID): Kanisius.
- Dalimartha S. 2000. Atlas Tumbuhan Obat Indonesia. Jilid II. Jakarta (ID): Trubus Agri Widya. Hlm 182-186.
- Hendaryono DPS, Wijayani A. 1994. Teknik Kultur Jaringan. Kanisius. Yogyakarta.
- Indrayanto G, Rahman A. 1990. Prospek Bioteknologi Sel Tanaman untuk Produksi Bahan Obat Nabati secara in vitro. *Medika Jurnal Kedokteran dan Farmasi*. Jakarta.
- Indrayanto G. 1987. Produksi Metabolit Sekunder dengan Teknik Kultur Jaringan Tanaman. Seminar Nasional. Metabolit Sekunder. Yogyakarta (ID): Universitas Gadjah Mada.
- Rukmana R. 1995. Temulawak. Tanaman Rempah dan Obat. Yogyakarta (ID): Kanisius.
- Street HE. 1977. Recent Advence in The Production of Medical Substances by Plant Cell Culture. New York. 3-6.
- Tomes DT. Ellis BE. Harney PM. Kasha KS. Petenson RL. 1982. Aplication of Plant Cell and Tissue Culture to Agriculture and Industry. Guleph (CA): The University of Guleph.
- Tonnesen HH. 1986. Chemistry. Stability and Analysis of Curcumin. Oslo (NO): Institute of Pharmacy University of Oslo.
- Untung S, Fatimah N. 2003. Kultur Jaringan Tanaman. Malang (ID): Universitas Muhammadiyah Malang.

