Main Article Content

Abstract

This research aimed to determine the active fraction and profile of active compounds in Manonjaya sSnakefruit skin extract that can be used as antidiabetic and the antidiabetic activity using zebra fish. Manonjaya sSnakefruit skin was extracted by maceration using 70% ethanol and then fractionated using n-hexane, ethyl acetate and methanol. The ethyl acetate fraction showed the highest yield and total phenolic content as well as the strongest α-glucosidase inhibition with an inhibition percentage of 64.43%. The ethyl acetate fraction provided the most active spot as an α-glucosidase inhibitor. The profile of active compounds that act as antidiabetic compound is flavonoid from glycosylflavone and flavone groups. Antidiabetic activity using zebra fish was indicates that Manonjaya Snakefruit skin extract from ethanol extract and ethyl acetate fraction can decrease blood sugar level of zebra fish after induced with alloxan. The crude extract group had 54.51% lower sugar content than the induction group and 41.70% lower than the negative control. Meanwhile, the ethyl acetate fraction group had 65.10% lower sugar content than the induction group and 55.27% lower than the negative control.

Keywords

fractionation zebra fish α-glucosidase inhibitor bioautographic TLC

Article Details

How to Cite
Eti Rohaeti, Dea Nurafifah, & Irmanida Batubara. (2022). Antidiabetic Activity of Manonjaya Snakefruit Skin Extract with Zebra Fish (Danio rerio) as Animal Model . Jurnal Jamu Indonesia, 7(3), 102–110. https://doi.org/10.29244/jji.v7i3.201

References

  1. Amarowicz R, R.B. Pegg, P. Rahimi-Moghaddam, B. Barl, J. A. Weil. 2004. Free- radical scavenging capacity and antioxidant activity of selected plant species from the Canadian prairies. Food Chemistry. 84: 551-562.
  2. Advesh et al. 2012. Regular care and maintenance of a ikan zebra (Danio rerio) laboratory: an introduction. Journal of Visualized Experiments. 69(4196):1- 8.
  3. Amsterdam A and Hopkins N. (2006). Mutagenesis strategies in zebrafish for identifying genes involved in development and disease. Trends Genet. 22(9):473-478.
  4. Capiotti KM, Junior RA, Kist LW, Bogo RM, Bonan CD, Silva RSD. 2014. Persistent impaired glucose metabolism in a zebrafish hyperglycemia model. Comparative Biochemistry and Physiology. 171: 58-65.
  5. Chang CC, Yang MH, Wen HM, Chern JC. 2002. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal Food Drug Analytical. 10: 178-182.
  6. Harborne JB. 1987. Metode Fitokimia Penuntun Cara Modern Menganalisa Tumbuhan. Bandung (ID): ITB.
  7. Jorgens K, Hillebrands JL, Hammes HP, Kroll J. 2012. Zebrafish: a model for understanding diabetic complication. Experimental Clinic Endocrinol Diabetes. 120: 186-187.
  8. Khan, F.R. dan Alhewairini, S.S. 2018. Zebrafish (Danio rerio) as a model organism. https://www.intechopen.com/chapters/64178.
  9. Markham KR. 1988. Cara Mengidentifikasi Flavonoid. Bandung (ID): ITB.
  10. Misnadiarly. 2006. Diabetes Mellitus: Gangren, Ulcer, Infeksi, Mengenal Gejala, Menanggulangi dan Mencegah Komplikasi. Jakarata. Pustaka Populer Obor.
  11. Naczk N, F. Shahidi. 1989. The effect of methanolammonia-water treatment on the content of phenolic acids of canola. Food Chemistry. 31: 159-164.
  12. Nazaruddin, Kristiawati. 1992. 18 Varietas Salak. Jakarta (ID): Penebar Swadaya.
  13. Nurishmaya MR. 2014. Pendekatan bioinformatika formulasi jamu baru berkhasiat antidiabetes dengan ikan zebra (Danio rerio) sebagai hewan model [Skripsi].FMIPA Institut Pertanian Bogor, Bogor.
  14. Pires S, Hmicha B, Marston A, Hostettmann K. 2009. A TLC bioautographic method for the detection of α- and β-glucosidase inhibitors in plant extracts. Phytochemical Analysis. 20:511-515.
  15. Prasetiyo, A. ., Mumpuni, E. ., & R. Tjandrawinata, R. . (2019). Docking Molekular dari Trigonella foenum-graceum sebagai Antidiabetes menggunakan Molegro Virtual Docking. Jurnal Jamu Indonesia, 4(2), 74–80. https://doi.org/10.29244/jji.v4i2.132
  16. Rahmawati A. 2009. Kandungan fenol total ekstrak buah mengkudu (Morinda citrifolia). [Skripsi]. Jakarta (ID): Universitas Indonesia.
  17. Rohaeti E, Fauzi M R, Batubara I. 2017. Inhibition of α-glucosidase, total phenolic content and flavonoid content on skin fruit and flesh extracts of some varieties of snakes fruits. Earth and Environmental Science. doi:10.1088/1755-1315/58/1/012066.
  18. Rubistein AL. 2006. Zebrafish assay for drug toxicity screening. Toxicol. 2(2):231-240.
  19. Sahputra FM. 2008. Potensi ekstrak kulit dan daging buah salak sebagai antidiabetes [Skripsi]. FMIPA Institut Pertanian Bogor, Bogor.
  20. Shin E, Hong B N, and Kang T H. 2012. An optimal establishment of acute hyperglycemia fish zebra model. African Journal of Pharmacy and Pharmacology. 6(42): 2922-2928.
  21. Sudjadi A, Rohman. 2004. Analisis Obat dan Makanan. Yogyakarta (ID): Yayasan Farmasi Indonesia.
  22. Swain T, W. E. Hillis. 1959. The phenolic constituents of Prunus domestica. I. The quantitative analysis of phenolic constituents. Journal Science Food Agriculture. 10: 63-68.
  23. Teame, T., Zhang, Z., Ran, C. Zhang, H., Yang, Y., Ding, Q., Xie, M., Gao, C., Ye, Y., Dua, M. The use of zebrafish (Danio rerio) as biomedical models. Animal Prontiers. 9(3):68-77.
  24. Utami, N. 2018. Zebrafish (Danio rerio) sebagai hewan model diabetes mellitus. BioTrens 9(1):15-19.
  25. Wang, L., Ma, J., Wu, W., Fang, Y., Liu, F., Yang, Q., Hu, X., Gu, X., He, Z., Sun, D. Jin, L., Zhang, X., 2022. Effect of aerobic exercise as a treatment on type 2 diabetes mellitus with depression-like behavior zebrafish, Life Sciences, 300, 120578, https://doi.org/10.1016/j.lfs.2022.120578.
  26. Yuhao L. 2005. Punica granatum flower extract, a potent -glucosidase inhibitor, improves postprandial hyperglycemia in Zucker diabetic fatty rats. Journal of Ethnopharmacology. 99: 239-244.
  27. Zahid, H.F., Ali, A., Ranadheera, C.S., Fang, Z., Dunshea, F.R., Ajlouni, S. 2022. In vitro bioaccessibility of phenolic compounds and alpha-glucosidase inhibition activity in yoghurts enriched with mango peel powder, Food Bioscience 50, Part A, 102011, https://doi.org/10.1016/j.fbio.2022.102011.
No Related Submission Found