Main Article Content

Abstract

Hypertriglyceridemia occurs when the triglyceride levels are increasing from the normal (>150 mg/dL) and it causes pancreatitis at a dose of more than 885 mg/dL. The triglyceride-lowering medicines consumption has several side effects on various organ systems. The plant-based medicine (phytomedicine) alternatives have been observed as the synthetic medicine substitution. Purple-fleshed sweet potato (Ipomoea batatas [L.]) contains anthocyanin that has proven to carry out the antioxidant mechanism and the capability to be used as anti-hypertriglyceridemia. This study aims to identify the activity of purple-fleshed sweet potato extracts on triglyceride levels and the histopathological profile of rats' pancreas-induced Triton X-100. Twenty-five male Wistar rats of week 8th were divided into five groups. The normal (N) group was treated with saline solution, and the treatment (T) groups were a single dose of 100 mg/kg of body weight (BW) Triton X-100 and purple-fleshed sweet potato extracts of 175 (T1); 350 (T2); and 700 (T3) mg/kg BW, while the negative (C-) control group was mere induced by a single-dose Triton X-100 of 100 mg/kg BW. The blood serum was isolated and the pre-and post-test was subsequent conducted. The triglyceride serum levels and histopathological data were analyzed by the Kolmogorov-Smirnov normality test and Kruskal-Wallis post-test statistical analysis. The results showed that Triton X-100-induced treatment could significantly increase the triglyceride levels compared to the normal group (P<0.05). The purple-fleshed sweet potato extracts started to lower the triglyceride level at a dose of 700 mg/kg BW (51.83 ±19.15(%)). The extract doses of 175 and 350 mg/kg BW could not reduce the triglyceride level significantly (3.03±2.77 and 5.63±4.24 (%), respectively). A dose of 700 mg/kg BW did not damage the exocrine gland and Langerhans islet of hyperlipidemia rat pancreas treated by Triton X-100. 

Keywords

hypertriglyceridemia purple-fleshed sweet potato pancreas histopathology

Article Details

How to Cite
Kintoko, Hardi Astuti Witasari, Rizky Nurdhillah, & Tsania Taskia Nabila. (2022). Characterization and The Effects Analysis of Purple-fleshed Sweet Potato Extract (Ipomoea batatas [L.]) Administration on Triglyceride Concentration and Pancreatic Histopathology Profiles of Triton X-100-induced Hyperlipidemia in Rats. Jurnal Jamu Indonesia, 7(2), 62–71. https://doi.org/10.29244/jji.v7i2.258

References

  1. Bennett, A. A., Mahood, E. H., Fan, K., & Moghe, G. D. 2021. Untargeted metabolomics of purple and orange-fleshed sweet potatoes reveals a large structural diversity of anthocyanins and flavonoids. Scientific Reports. 11(1): 1–13.
  2. Burdulis, D., Ivanauskas, L., Dirse, V., Kazlauskas, S., & Razukas, A. 2007. Study of diversity of anthocyanin composition in bilberry (Vaccinium myrtillus L.) fruits. Medicina (Kaunas, Lithuania). 43(12): 971–977.
  3. Chen, C. C., Lin, C., Chen, M. H., & Chiang, P. Y. 2019. stability and quality of anthocyanin in purple sweet potato extracts. Foods. 8(9): 1–13.
  4. Danciu, M., Mihailovici, M., Dima, A., Cucu, C. 2014. Atlas of pathology, www.pathologyatlas.ro., diakses tanggal 22 Juni 2022. Depkes RI. 2000. Parameter standar umum ekstrak tumbuhan obat, Jilid I, Hal.30-31, Jakarta (IDN): Departemen Kesehatan Republik Indonesia. Ekaputra, T., & Pramitasari, R. 2020. Evaluation of physicochemical properties of anthocyanin extracts and powders from purple sweet potato (Ipomoea batatas L.). Food Research. 4(6): 2020–2029.
  5. Gaetani, R., Aude, S., Demaddalena, L. L., Strassle, H., Dzieciatkowska, M., Wortham, M., Bender, R. H. F., Nguyen-Ngoc, K. V., Schmid-Schöenbein, G. W., George, S. C., Hughes, C. C. W., Sander, M., Hansen, K. C., & Christman, K. L. 2018. Evaluation of different decellularization protocols on the generation of pancreas-derived hydrogels. Tissue Engineering - Part C: Methods. 24(12): 697–708.
  6. Garg, R., & Rustagi, T. 2018. Management of hypertriglyceridemia induced acute pancreatitis. BioMed Research International. 2018: 1–12.
  7. Gonçalves, A. C., Nunes, A. R., Falcão, A., Alves, G., & Silva, L. R. 2021. Dietary effects of anthocyanins in human health: A Comprehensive Review. Pharmaceuticals 14(7): 1–34.
  8. Harborne, J. B., Padmawinata, K., & Soediro, I. 1987. Metode fitokimia penuntun cara modern menganalisis tumbuhan, Edisi kedua. Bandung (IDN): Institut Teknologi Bandung Press .
  9. Jawi, I. M., Indrayani, A. W., & Sutirta-Yasa, I. W. P. 2015. Aqueous extract of balinese purple sweet potato (Ipomoea batatas L .) prevents oxidative stress and decreases blood interleukin-1 in hypercholesterolemic rabbits. Bali Medical Journal. 4(1): 37–40.
  10. Khoo, H. E., Azlan, A., Tang, S. T., & Lim, S. M. 2017. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food and Nutrition Research. 61(1): 1–21.
  11. Kim, E.-H., Lee, O.-K., Kim, J. K., Kim, S.-L., Lee, J., Kim, S.-H., & Chung, I.-M. .2014. Isoflavones and anthocyanins analysis in soybean (Glycine max (L.) Merill) from three different planting locations in Korea. Field Crops Research. 156: 76–83.
  12. Lim, S., Xu, J., Kim, J., Chen, T., Su, X., & Standard, J. 2013. Role of anthocyanin-enriched purple-fleshed sweet potato p40 in colorectal cancer prevention. Molecular Nutrition & Food Research. 57: 1908–1917.
  13. Liu, C., Sun, J., Lu, Y., & Bo, Y. 2016. Effects of anthocyanin on serum lipids in dyslipidemia patients : A systematic review and meta-analysis. PLoS ONE. 11(9 e0162089): 1–11.
  14. Liu, X., Xiang, M., Fan, Y., Yang, C., Zeng, L., Zhang, Q., Chen, M., & Liao, Z. 2017. A Root-preferential DFR-like gene encoding dihydrokaempferol reductase involved in anthocyanin biosynthesis of purple-fleshed sweet potato. Frontiers in Plant Science. 8(February): 1–9.
  15. Mahfudh, N., Mantali, M. F., & Sulistyani, N. 2022. Antioxidant and antihyperlipidemic effect of purple sweet potato leaf extract (Ipomoea batatas L.) and red yeast rice combination in hypercholesterol rats. Indonesian Journal of Pharmacy. 33(1): 93–99.
  16. Mahmood, S. B., Atif, M., Ali, S. R., Ahmed, M. I., & Rahman, S. A. 2015. Evaluation of antihyperlipidemic activity of methanolic leaves extract of Lasia spinosa and its role in prevention of hyperlipidemia induced pancreatitis in rats. International Journal of Pharmaceutical Sciences and Research. 6(4): 1502–1508
  17. Mahmudatussa’adah, A., Fardiaz, D., Andarwulan, N., & Kusnandar, F. 2014. Karakteristik warna dan aktivitas antioksidan antosianin ubi jalar ungu [Color characteristics and antioxidant activity of anthocyanin extract from purple sweet potato]. Jurnal Teknologi Dan Industri Pangan. 25(2): 176–184.
  18. Ni, Q., Yun, L., Xu, R., & Shang, D. 2014. Correlation between blood lipid levels and chronic pancreatitis: a retrospective case-control study of 48 cases. Medicine (United States). 93(28), e331: 1-6.
  19. Noda, A. A., Fleitas, O., Rodriguez, I., Beltran, J. F., Falcon, R., Almaguer, T., & TH, S. 2017. Triton X-100 vs. Triton X-114: isolation of outer membrane proteins from Leptospira spp. International Journal of Veterinary Science & Technology. 1(1): 1–5.
  20. OD, O., & RM, O. 2018. Evaluation of hypoglycemic and hypolipidemic potentials of sweet potato on a wistar albino rat. American Journal of Advanced Drug Delivery. 06(01).
  21. Packard, C. J., Boren, J., & Taskinen, M. R. 2020. Causes and consequences of hypertriglyceridemia. Frontiers in Endocrinology. 11(May): 1–15.
  22. Parwin, A., Najmi, A. K., Ismail, M. V., Kaundal, M., & Akhtar, M. 2019. Protective effects of alendronate in Triton X-100-induced hyperlipidemia in rats. Turkish Journal of Gastroenterology. 30(6): 557–564.
  23. Permatasari, E. P. P. 2015. Uji aktivitas antibakteri ekstrak etanol dan infusa daun ubi jalar merah (Ipomoea batatas Lamk.) terhadap bakteri Streptococcus pyogenes. Skripsi. Universitas Muhammadiyah Surakarta.
  24. Pirillo, A., Casula, M., Olmastroni, E., Norata, G. D., & Catapano, A. L. 2021. Global epidemiology of dyslipidaemias. Nature Reviews Cardiology. 18: 689–700.
  25. Ragab, S. M. M., Omar, H. M., Kh, S., Elghaffar, A., & El-metwally, T. H. 2014. Hypolipidemic and antioxidant effects of phytochemical compounds against hepatic steatosis induced by high fat high sucrose diet in rats. Archives of Biomedical Sciences. 2(1): 31–40.
  26. Ruiz-García, A., Arranz-Martínez, E., López-Uriarte, B., Rivera-Teijido, M., Palacios-Martínez, D., Dávila-Blázquez, G. M., Rosillo-González, A., González-Posada Delgado, J. A., Mariño-Suárez, J. E., Revilla-Pascual, E., Quintana-Gómez, J. L., Íscar-Valenzuela, I., Alonso-Roca, R., Javierre-Miranda, A. P., Escrivá-Ferrairó, R. A., Tello-Meco, I., Ibarra-Sánchez, A. M., Isabel Gutiérrez Sánchez, M., Quintana, J. R. I., … Zarzuelo Martín, N. 2020. Prevalence of hypertriglyceridemia in adults and related cardiometabolic factors. SIMETAP-HTG study. Clínica e Investigación En Arteriosclerosis (English Edition). 32(6): 242–255.
  27. Rygiel, K. 2018. Hypertriglyceridemia - common causes, prevention and treatment strategies. Current Cardiology Reviews. 14(1): 67–76.
  28. Salehi, B., Sharifi-Rad, J., Cappellini, F., Reiner, Z., Zorzan, D., Imran, M., Sener, B., Kilic, M., El-Shazly, M., Fahmy, N. M., Al-Sayed, E., Martorell, M., Tonelli, C., Petroni, K., Docea, A. O., Calina, D., & Maroyi, A. 2020. The therapeutic potential of anthocyanins: current approaches based on their molecular mechanism of action. Frontiers in Pharmacology. 11(August): 1–20.
  29. Senja, R. Y., Issusilaningtyas, E., Nugroho, A. K., & Setyowati, E. P. 2014. The comparison of extraction method and solvent variation on yield and antioxidant activity of Brassica oleracea L. var. capitata f. rubra extract. Majalah Obat Tradisional. 19(1): 43–48.
  30. Supekar, A. R., & Kale, A. J. 2015. Anti-atherosclerosis activity of seed oil of Punica granatum Linn in Triton X-100 induced hyperlipidemic rats. International Journal of Advanced Research. 3(10), 1276–1280.
  31. Sutirta-Yasa, I. W. P., & Jawi, I. M. 2017. Antioxidant potential and hypolipidemic effects of combined purple sweet potato (Ipomoea batatas L.) tuber extract with honey in rats given high cholesterol feed. Bali Medical Journal. 6(3): 65.
  32. Taddei, C., Zhou, B., Bixby, H., Carrillo-Larco, R. M., Danaei, G., Jackson, R. T., Farzadfar, F., Sophiea, M. K., Di Cesare, M., Iurilli, M. L. C., Martinez, A. R., Asghari, G., Dhana, K., Gulayin, P., Kakarmath, S., Santero, M., Voortman, T., Riley, L. M., Cowan, M. J., Ezzati, M. 2020. Repositioning of the global epicentre of non-optimal cholesterol. Nature: 582(7810): 73–77.
  33. Ward, N. C., Watts, G. F., & Eckel, R. H. 2019. Statin toxicity: mechanistic insights and clinical implications. Circulation Research. 124(2): 328–350.
  34. Wicaksono, L. A., Yunianta, & Widyaningsih, T. D. 2016. Anthocyanin extraction from purple sweet potato cultivar antin-3 (Ipomoea batatas L.) using maceration, microwave assisted extraction, ultrasonic assisted extraction and their application as anti-hyperglycemic agents in alloxan-induced Wistar. International Journal of PharmTech Research. 9(3): 181–192.
  35. Widyasanti, A., Arsyad, M. Z., & Wulandari, E. 2021. Ekstrasi antosianin kulit buah naga merah (Hylocereus polyrhizus) menggunakan metode maserasi. AgroIndustri. 11(2): 72–81.
  36. Yu, H., Chen, Y., Kong, H., He, Q., Sun, H., Bhugul, P. A., Zhang, Q., Chen, B., & Zhou, M. 2018. The rat pancreatic body tail as a source of a novel extracellular matrix scaffold for endocrine pancreas bioengineering. Journal of Biological Engineering. 12(1): 1–16.
  37. Zheng, J., Wu, J., Chen, J., Liu, J., Lu, Y., Huang, C., Hu, G., Wang, X., & Zeng, Y. 2016. Therapeutic effects of quercetin on early inflammation in hypertriglyceridemia-related acute pancreatitis and its mechanism. Pancreatology. 16(2): 200–210.
  38. Zhu, Y., Huang, X., Zhang, Y., Wang, Y., Liu, Y., Sun, R., & Xia, M. 2014. Anthocyanin supplementation improves HDL-associated paraoxonase 1 activity and enhances cholesterol efflux capacity in subjects with hypercholesterolemia. The Journal of Cli
No Related Submission Found